2,500 research outputs found

    Small Numbers of Vortices in Anisotropic Traps

    Get PDF
    We investigate the appearance of vortices and vortex lattices in two-dimensional, anisotropic and rotating Bose-Einstein condensates. Once the anisotropy reaches a critical value, the positions of the vortex cores in the ground state are no longer given by an Abrikosov lattice geometry, but by a linear arrangement. Using a variational approach, we determine the critical stirring frequency for a single vortex as well as the equilibrium positions of a small number of vortices.Comment: 7 pages, 7 figure

    Comparison of theoretical and absolute experimental fully differential cross sections for ion-atom impact ionization

    No full text
    We report fully differential cross section (FDCS) calculations and absolute measurements for ion-atom impact ionization. Using the COLTRIMS (cold target recoil ion momentum spectroscopy) method we have obtained absolute FDCS both in the scattering plane as well as out of the scattering plane for 100 MeV amu(- 1) C6+ ionization of helium FDCS results are presented for different projectile scattering angles and ejected electron energies. The measurements are compared with a theoretical calculation employing an asymptotically exact three body final state wavefunction that contains all active two particle subsystem interactions to infinite order in perturbation theory. For the active electron a Hartree-Fock (HF) bound state wavefunction is used for the initial state and numerical continuum state eigenfunctions of a HF potential for the ion are used for the final state In the scattering plane these theoretical results are in very good agreement with experiment for small and intermediate momentum transfer. However some significant discrepancies are found for large momentum transfer and outside the scattering plane. These discrepancies disappear upon comparison with successively less differential cross sections

    Three-Dimensional Imaging of Atomic Four-Body Processes

    No full text
    To understand the physical processes that occur in nature we need to obtain a solid concept about the 'fundamental' forces acting between pairs of elementary particles. It is also necessary to describe the temporal and spatial evolution of many mutually interacting particles under the influence of these forces. This latter step, known as the few-body problem, remains an important unsolved problem in physics. Experiments involving atomic collisions represent a useful testing ground for studying the few-body problem. For the single ionization of a helium atom by charged particle impact, kinematically complete experiments have been performed since 1969 (ref. 7). The theoretical analysis of such experiments was thought to yield a complete picture of the basic features of the collision process, at least for large collision energies. These conclusions are, however, almost exclusively based on studies of restricted electron-emission geometries. Here, we report three-dimensional images of the complete electron emission pattern for the single ionization of helium by the impact of C6+ ions of energy 100 MeV per a.m.u. (a four-body system) and observe features that have not been predicted by any published theoretical model. We propose a higher-order ionization mechanism, involving the interaction between the projectile and the target nucleus, to explain these features

    Vortex lattice formation in a rotating Bose-Einstein condensate

    Full text link
    We study the dynamics of vortex lattice formation of a rotating trapped Bose-Einstein condensate by numerically solving the two-dimensional Gross-Pitaevskii equation, and find that the condensate undergoes elliptic deformation, followed by unstable surface-mode excitations before forming a quantized vortex lattice. The origin of the peculiar surface-mode excitations is identified to be phase fluctuations at the low-density surface regime. The obtained dependence of a distortion parameter on time and that on the driving frequency agree with the recent experiments by Madison {\it et al.} [Phys. Rev. Lett. {\bf 86}, 4443 (2001)].Comment: 4 pages, 4 figure

    Periodically-dressed Bose-Einstein condensates: a superfluid with an anisotropic and variable critical velocity

    Full text link
    Two intersecting laser beams can produce a spatially-periodic coupling between two components of an atomic gas and thereby modify the dispersion relation of the gas according to a dressed-state formalism. Properties of a Bose-Einstein condensate of such a gas are strongly affected by this modification. A Bogoliubov transformation is presented which accounts for interparticle interactions to obtain the quasiparticle excitation spectrum in such a condensate. The Landau critical velocity is found to be anisotropic and can be widely tuned by varying properties of the dressing laser beams.Comment: 5 pages, 4 figure

    Kelvin Modes of a fast rotating Bose-Einstein Condensate

    Full text link
    Using the concept of diffused vorticity and the formalism of rotational hydrodynamics we calculate the eigenmodes of a harmonically trapped Bose-Einstein condensate containing an array of quantized vortices. We predict the occurrence of a new branch of anomalous excitations, analogous to the Kelvin modes of the single vortex dynamics. Special attention is devoted to the excitation of the anomalous scissors mode.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Post-Prior discrepancies in CDW-EIS calculations for ion impact ionization fully differential cross sections

    Full text link
    In this work we present fully differential cross sections (FDCSs) calculations using post and prior version of CDW--EIS theory for helium single ionization by 100 MeV C6+^{6+} amu−1^{-1} and 3.6 MeV amu−1^{-1} Au24+^{24+} and Au53+^{53+} ions. We performed our calculations for different momentum transfer and ejected electron energies. The influence of internuclear potential on the ejected electron spectra is taken into account in all cases. We compare our calculations with absolute experimental measurements. It is shown that prior version calculations give better agreement with experiments in almost all studied cases.Comment: 9 pages, 7 figure

    Analytical results for a trapped, weakly-interacting Bose-Einstein condensate under rotation

    Full text link
    We examine the problem of a repulsive, weakly-interacting and harmonically trapped Bose-Einstein condensate under rotation. We derive a simple analytic expression for the energy incorporating the interactions when the angular momentum per particle is between zero and one and find that the interaction energy decreases linearly as a function of the angular momentum in agreement with previous numerical and limiting analytical studies.Comment: 3 pages, RevTe
    • …
    corecore